
Application of Recurrent Graph Convolutional

Networks to the Neural State Estimation Problem

Alexander Berezin1,*, Stephan Balduin1, Thomas Oberließen2, Eric Veith1, Sebastian Peter2, and Sebastian Lehnhoff1
1 R&D Division Energy - OFFIS e.V., Escherweg 2, 26121, Germany; Email: stephan.balduin@offis.de (S.B.);

eric.veith@offis.de (E.V.); sebastian.lehnhoff@offis.de (S.L.)
2 ie3 - TU Dortmund, Emil-Figge-Straße 70, 44227, Germany; Email: thomas.oberliessen@tu-dortmund.de (T.O.);

sebastian.peter@tu-dortmund.de (S.P.)

Abstract—Neural State Estimation (NSE) is a novel

application of deep learning which is concerned with

interpolating the state of a distribution power grid from a

limited amount of sensor data and can be represented as a

non-linear graph time-series nowcasting problem. Although

several authors have proposed their solutions for NSE, there

is neither a comparison of approaches nor an industry-

standard state of the art model yet. The main purpose of

this paper is to compare these solutions to a promising new

approach: recurrent graph convolutional neural networks.

There are theoretical reasons to assume that this class of

models is suited for solving NSE. Our experiments verify

that they achieve similar performance while also presenting

many unique advantages compared to the previously

proposed models.

Index Terms—Graph convolutional networks, neural state

estimation, power system state estimation

I. INTRODUCTION

State Estimation (SE) is the task of relating grid usage

observations to the current grid state. For many years, SE

was mainly performed for the transmission grids based on

real and pseudo-measurement data. While the

transmission grid is very extensively equipped with

sensor technology, this is not the case for the distribution

grids. Those sensors were not necessary to operate a

distribution grid for a long time, but this has changed due

to the increasing number of complex consumers. A grid

operation closer to the grid’s design limit caused by the

increasing complexity of the distribution grid results in

the need for efficient grid expansion and operational

detection of power peaks. SE could provide the necessary

grid transparency for the distribution grids, but some

issues make it hard or impossible to do so. The required

measurement data is missing since the distribution grids

are much less permeated with sensor technology.

Operators have to approximate load and generation with

default load profiles, which do not describe the actual

behavior of a given system’s participants. More sensor

technology would be needed, which is economically not

feasible since distribution grids have many more nodes

Manuscript received September 1, 2022; revised October 15, 2022;

accepted November 5, 2022.
*Corresponding author: Alexander Berezin (email: aleksandr.berezin

@offis.de).

and lines to cover [1]. Furthermore, they are much more

sensitive to changes in impedance than transmission grids.

This characteristic invalidates some simplifications

usually made for transmission grids [2], like assuming a

near-DC power flow. Due to the X/R ratio in distribution

grids, this assumption does not hold for them. To achieve

grid transparency despite these issues, an intelligent

approach is required [3, 4].
Artificial neural networks (ANNs) gained popularity in

many different fields because of their ability to function

as universal approximators for every Borel-measurable

function, or even arbitrary dynamic systems in the case of

Recurrent neural network (RNNs) [5–7]. Furthermore,

ANNs have proven to be faster than iterative solutions for

the PF calculation in the distribution grid and, depending

on the quality of the data available for training, can

achieve even higher solution quality [8]. Neural State

Estimation (NSE), i.e. using ANNs to approximate the

state of a given grid, was successfully applied in the past

[9] and is the subject of active research indicated by an

increasing number of publications [10, 11]. Generally, the

approaches of these publications can be categorized into

two types. The first approach is grid-agnostic neural

networks, e. g., feed-forward ANNs [12] or autoencoders

[13]. As the name implies, those approaches do not

require any information about the grids’ topology or

parameters. However, that information can be exploited

to reduce the complexity of the training procedure, which

leads to the second category: the grid-aware neural

networks [14], also referred to as physics-aware, physics-

informed, or physics-based models.
To the best of our knowledge, there has not been a

direct comparison of NSE approaches yet. Therefore, the

contribution of our work is to fill this gap and introduce a

new type of model for the given problem. The rest of this

paper is structured as follows. In Section II we review

state-of-the-art NSE approaches from the literature. In

Section III we describe the considerations that lead to the

new type of models we propose for NSE. In Section IV

we describe the experiment setup used in order to

compare selected NSE approaches, and we present the

results from those experiments in Section V. We discuss

the results and outline possible directions for future

research in the conclusion.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 3, May 2023

209doi: 10.18178/ijeetc.12.3.209-215

II. RELATED WORK

NSE is a relatively new research field, with the first

notable works published in 2014. Reference [13] used

autoencoders to estimate the state of distribution grids.

They used a Particle Swarm Optimization to reconstruct

values for missing signals, which are, in this context,

voltage magnitudes and phases. Later publications used

simple feed-forward ANNs to directly map the available

inputs (mostly complex power values of load and

generation) to the desired outputs [8, 15]. Another of

those early approaches used ANNs to estimate inputs for

the traditional SE methods like Gauss-Newton [12].
More recent publications seem to prefer grid-aware

over grid-agnostic approaches. Those have some

advantages, e. g., they require less tuning effort and may

yield better performance. One, if not the first, of these

grid-aware models, is the physics-aware neural network

(PAWNN), proposed by [14]. The idea is to use the

classic feed-forward neuron as a building block but prune

its synapses according to the graph’s adjacency matrix,

i.e., the grids’ topology. These neurons are stacked in a

variable number of layers, which is equal to the

maximum diameter of a vertex-cut partition of the

original graph (D). The algorithm for calculating is

explained in their paper.
An improved derivation of this model was proposed in

[16]. Designing the ANN architecture based on the

adjacency matrix, as it was done for the original PAWNN,

may lead to unnecessary connections between layers. The

pruned physics-aware neural network (P2N2) cut out

those unnecessary connections and used separate weight

matrices for the individual parts of the ANN, depending

on the grid topology.
Another approach is the prox-linear neural network

model, proposed in [11], which is based on a prox-linear

solver for SE using the least absolute value (LAV)

method. The main idea is to split the nonlinear problem

of SE into several blocks that are proximal linear. The

prox-linear neural network is built by unfolding these

blocks and can achieve significant performance

improvements. Additionally, the authors developed a

deep RNN for power system state forecasting (PSSF)

since such networks are capable of learning temporal

correlations in (historical) data.
Finally, while this paper was being finalized, we

discovered another study that tested a similar hypothesis

[17] of applying recurrent graph convolutional neural

networks (RGCNNs) to NSE. However, we believe that

our research is still valuable, as it was conducted

independently and tests many more models.

III. RECURRENT GRAPH CONVOLUTIONAL NEURAL

NETWORKS

Now let us abstract away from the existing solutions

and think about the characteristics required from an ANN

model to tackle the NSE problem efficiently. For that, we

need to start with the properties of datasets commonly

used for SE. These datasets are, fundamentally, graphs

with time series associated with every node. From that,

we can assume that a desirable model has to be geometric

in the sense that it can leverage the structure of the graph

and also recurrent to capture temporal correlations in the

time series. We also expect it to benefit from being

convolutional because the graph convolution operation is

a good first-order approximation of the current flow in

the power grid [18]. From these considerations, we can

reasonably expect the models residing at the intersection

of these classes (depicted in Fig. 1) to be most suited for

NSE.

Fig. 1. Model selection rationale.

This class of models is called RGCNNs, originally

proposed in [19], and it is represented by a significant

number of different models in the literature. However, we

have not been able to find a comprehensive review.
RGCNNs belong to a more general class of graph

convolutional networks (GCNs), first proposed in [20],

which can operate naturally on graph-structured data. By

extracting and utilizing features from the underlying

graph, GCNs can make more informed predictions about

entities in these interactions, as compared to models that

consider individual entities in isolation. This is achieved

by employing a special convolution [21] on every node of

the graph.

Since the convolution operation is local (only affects

the adjacent nodes), the number of trainable parameters in

GCNs is comparatively small. It also means that the

model does not store information about the graph’s

structure but only about correlations between adjacent

nodes. This makes GCNs ideal for transfer learning

applications since a trained model can be transferred to a

new graph and retain its predictive ability, provided that

the interactions between nodes follow the same patterns.

This ability is important for practical implementations of

NSE, as discussed in [4].

RGCNNs combine the convolutional units from GCNs

with memory units from RNNs in different ways in order

to capture temporal correlations in the data. These models

have been successfully applied to several practical

problems, such as predicting traffic [22] and infection

spread [23].

IV. EXPERIMENT SETUP

The question we want to answer with this experiment is

whether generic RGCNNs can compete in solving the

NSE problem with models developed explicitly for this

task.

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 3, May 2023

210

A. Data Set for Neural State Estimation

To generate reproducible results, we chose open data
sources and simulated data as the basis of our model
comparison. Using synthetic data circumvents the issue
of incomplete data sets due to a lack of sensor technology
and data privacy restrictions. The grid and training data
we used are based upon a SimBench benchmark model
(available under ODbL and DbCL licenses). SimBench
provides grid models that resemble real-life grids, as well
as typical nodal load and generation time series [24].

The specific grid chosen is the 1-MV-urban–1-sw, a
147-node, 10 kV medium voltage grid. Using the
provided load and generation time series, we calculated
the resulting grid state with the agent based power system
simulation SIMONA [25, 26]. The resulting data relevant
to the model comparison comprises complex nodal
voltages for all nodes with a temporal resolution of 15
minutes. In total, there are 35135 timesteps.

For this experiment, the dataset is split 50:50 into
training and validation data along the time axis, meaning
that the models are trained on the first half of the time
steps and have to forecast the second half, so no data
points are repeated in the process.

By design, RGCNNs have a problem with SE: they
require input data (labels) for all nodes of the graph,
while the very nature of the task implies that input data is
only available for the observable nodes. A possible
solution for this issue is found in [20]. The unobservable
nodes can be initialized with Gaussian white noise
sampled from ground truth distribution. The output data
(targets) is the ground truth itself. Specifically, we
assume 30% grid observability, i.e., 30% of nodes in the
input data are initialized with the ground truth, and the
rest are randomized.

B. Metric

In order to perform a statistical comparison of models,
a numerical metric for said comparison has to be agreed
upon first. Of course, such a metric would necessarily
have to reduce the complexity of the task and thus would
miss important details of the result. We will attempt to
partially compensate for this in the next section by
plotting each model’s per-node error.

We have chosen to use the metric that is most
commonly used in deep learning for evaluating the
performance in regression problems, which is Mean
Squared Error (MSE). It is also used as the loss function
for all models except the prox-linear Network.

C. Baseline Model

The best baseline for comparing SE models would be
the conventional method of solving this problem, namely
the weighted least squares algorithm. However, that
algorithm has a high number of manually tuned
parameters, and we could not obtain a representative
open-source implementation. Instead, we use a simple
RNN, passing graph nodes as features in order to capture
temporal correlations, which neither the physics-aware
neural network nor the prox-linear neural network does.

D. Physics-Aware Neural Network

We did not find a reference implementation for this
model, proposed in [14], and implemented it ourselves

using PyTorch. The implementation may not be entirely
correct and thus may not accurately represent its’
performance. Unfortunately, we were not able to replicate
the P2N2 variant from [16] since the proposed algorithm
is only explained in the paper on one trivial example, and
it is not clear how to generalize that example to more
complex data.

E. Prox-Linear Neural Network

A reference implementation is available on GitHub:
https://github.com/LiangZhangUMN/PSSE-via-DNNs.
We adapted the implementation to use PyTorch instead of
TensorFlow but did not change anything else.

F. Recurrent Graph Convolutional Neural Networks

Fortunately, there exists a whole library dedicated to
reference implementations of the most well-known
RGCNN models called PyTorch Geometric Temporal
(PyGT) [27].

We decided to only use models without
hyperparameters from PyGT. There are two reasons for
that. First, hyperparameter tuning significantly
complicates a comparative study. Second, PyGT in its
current implementation suffers from performance issues
that we will discuss in more detail in Evaluation, making
the tuning process far too slow. This left us with two
models: EvolveGCN and Temporal GCN.

In both cases, we build the final model by stacking D
RGCNN layers (like [14] did for their PAWNN model) to
ensure that information from the observable nodes is
propagated across the entire graph during the forward
pass. The loss function used for training is MSE.
1) EvolveGCN

The Evolving Graph Convolutional Network
(EvolveGCN) is a model proposed in [28]. It consists of a
GCN, which is built for the graph structure, and a RNN,
which tracks changes in the graph topology and regulates
the GCN parameters in each step to reflect those changes.
It has two slightly different variants, EvolveGCN-H and
EvolveGCN-O, which differ in how the weight matrix is
updated. The “-H” treats the weight matrix as a hidden
state of the dynamical system, while the “-O” treats it as
the system’s output. The authors recommend the “-O”
variant if the graph structure is more informative than
node labels. We included both of them in the comparison.
2) Temporal GCN

The temporal graph convolutional network (TGCN) is
a model originally proposed in [29] for traffic prediction.
A GCN is used to capture spatial features and is
combined with gated recurrent unit (GRUs) for temporal
features. The authors provide a reference implementation,
but there is also an implementation in the aforementioned
PyGT library, which is the one that we chose.

V. EVALUATION

The following experiments were run on an on-premise
NVIDIA DGX Server, although a single consumer-class
GPU with CUDA support is sufficient to replicate them.

A. Individual Model Evaluation

Below are the results of training the models in related

work and experiment setup on the data from data set for

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 3, May 2023

211

neural state estimation. MSE is used as the overall

performance metric, while the per-node figures depict

absolute error for better visual representation. We are

omitting the figure for the RNN since we do not expect it

to perform competitively.
Note that all models are trained in stochastic gradient

descent (SGD) mode. This is because PyGT does not

support batches for most of its models and is only able to

process one data point at a time. Currently, this presents a

disadvantage for RGCNNs. Still, since it is a technical

rather than a theoretical limitation, we are using SGD on

all models to make the comparison more representative,

on the assumption that the training mode only affects the

convergence speed and not the prediction quality once

convergence has been reached.
First, looking at the convergence graphs, we can see

Fig. 2 and Fig. 3 that EvolveGCN-H converges almost

immediately and proceeds from the training data set to

the testing one almost without loosing accuracy;

EvolgeGCN-O shows similar behavior but is not as stable

as the former. TGCN in Fig. 4 behaves similar as well but

with more noise on the test set compared to the

EvolveGCNs. PAWNN in Fig. 5 converges slower and to

a lower point but generalizes to the test sequence less

successfully. The convergence of the prox-linear network

as shown in Fig. 6 is too noisy to analyze. These results

are consistent with the number of trainable parameters for

each model, which we will provide later in this section.

Fig. 2. EvolveGCN-H

Fig. 3. EvolveGCN-O.

Fig. 4. TGCN.

F

ig. 5. PAWNN.

Fig. 6. Prox-linear network.

Second, the per-node error shows an important

distinction between RGCNNs and other models: the

former perform better on long branches of the graph,

while the latter produce more consistent error values over

all nodes. This becomes clear with a look on the scale of

the color-coding. The EvolveGCN-H scales from 0.2 to

0.8 with low error values especially in long branches and

a few high values in the center, while EvolveGCN-O has

error values between 0.1 and 0.7 with similar

characteristic to the former, as shown in Fig. 2 and Fig. 3

respectively. Fig. 4 shows that TGCN has a lower delta

than the former two models but, again, a similar

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 3, May 2023

212

characteristic. The PAWNN in Fig. 5 has lower error

values with a smaller delta between 0.04 and 0.18 but the

error in the long branches is higher than in the center.

Finally, the prox-linear network as shown in Fig. 6 still

has a small delta compared to the RGCNNs with 0.05 to

0.3 with a similar characteristic to the PAWNN.

B. Model Comparison

We have used 10 most common random seeds [30] to

collect performance statistics, which is presented in Fig. 7.

All the data collected is also available in a supplementary

file results.xlsx in our repository (see Availability of data

and code).
Looking at Fig. 7 in isolation, it is hard to determine

the best performing model: PAWNN and RGCNNs

produce very similar average results. The Prox-linear

network is remarkably invariant of the random seed, but

its performance is worse than the competition. Finally,

RNN is far behind all other models. This suggests that

temporal correlations in isolation are significantly less

important for the SE problem than spatial ones.
In terms of variation, we observe that RGCNN are

relatively more consistent at their performance level, with

TGCN being the most consistent of the RGCNNs. Since

the main differentiating feature between TGCN and

EvolveGCN is the ability of the former to better leverage

temporal correlations, this suggests that incorporating

them into the model is still valuable. These observations

point us to a more rigorous statistical analysis of the

dataset as a venue for further research into the problem.

Fig. 7. Comparing the accuracy

Fig. 8. Comparing the parameter count.

A much more drastic difference between conventional

models and RGCNNs can be observed in Fig. 8, which

depicts the number of trainable parameters of each model.

Here we can see that this number is roughly three orders

of magnitude lower for the RGCNNs. Note that the

parameter axis is logarithmic and that some models have

a variable number of parameters.
It would be reasonable to assume that this difference in

complexity translates into a significantly faster training
process for the RGCNNs, but that is not the case in
practice. Unfortunately, it is currently impossible to
perform a representative comparison of training time
between conventional and RGCNN models due to
computational inefficiencies in the PyGT library [27].
However, we can assume that the training time for ideal
implementations would be roughly proportional to the
number of parameters in each model. By that logic,
RGCNNs should have the advantage in this metric.

VI. CONCLUSION

With the experimental data from Evaluation we can

claim that the question posed Experiment Setup in is

answered in the affirmative. In other words, generic

RGCNN models applied to the NSE problem offer results

competitive with those from models developed

specifically for this task and at a much lower cost in

model complexity. While specialized models rely on a

large number of parameters to fit all the data at once and

have problems generalizing, RGCNNs focus on

approximating the local interactions between nodes in a

graph. As a result, they can better generalize to new data

and possibly even to new grid topologies.
The next step in research on this topic would be

developing more specialized RGCNNs focused on NSE

that can also leverage the inherent transferability of

GCNs. There is also much room for improving the

computational performance of these models.

AVAILABILITY OF DATA AND CODE

We welcome the reviewers and other authors to

replicate our experiments. For this purpose, we provide

the complete source code along with the dataset in the

following GitLab repository:

https://gitlab.com/funbotan/transense-model-comparison.
The repository README will provide detailed

instructions for setting up the environment.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

Alexander Berezin and Stephan Balduin conducted the

research and wrote the paper; Thomas Oberließen and

Sebastian Peter provided the dataset; Eric Veith and

Sebastian Lehnhoff provided scientific advisory; all

authors approved the final version.

ACKNOWLEDGMENT

This research is a part of project TRANSENSE, funded

by the German Federal Ministry for Economic Affairs

and Energy (FKZ 03EI6044A).

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 3, May 2023

213

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 3, May 2023

214

ACRONYMS

ANN: Artificial Neural Network.
EvolveGCN: Evolving Graph Convolutional Network.
GCN: Graph Convolutional Network.
GRU: Gated Recurrent Unit.
LAV: Least Absolute Value.
MSE: Mean squared error.
NSE: Neural State Estimation.
P2N2: Pruned Physics-Aware Neural Network.
PAWNN: Physics-Aware Neural Network.
PF: Power Flow.
PSSF: Power System State Forecasting.
PyGT: PyTorch Geometric Temporal.
RGCNN: Recurrent Graph Convolutional Neural

Network.
RNN: Recurrent Neural Network.
SE: State Estimation.
SGD: Stochastic gradient descent.
TGCN: Temporal Graph Convolutional Network.

REFERENCES

[1] H. Seidl, S. Mischiner, and R. Heuke, “Beobachtbarkeit und

steuerbarkeit in energiesystemen – eine handlungsanalyse der

dena-plattform systemdienstleistungen,” Deutsche Energie-

Agentur GmbH, 2016.
[2] F. F. Wu, “Power system state estimation: A survey,”

International Journal of Electrical Power & Energy Systems, vol.

12, no. 2, pp. 80–87, 1990.
[3] O. Krause, D. Martin, and S. Lehnhoff, “Under-determined

WLMS state estimation,” in Proc. of 2015 IEEE PES Asia-Pacific

Power and Energy Engineering Conf., 2015.
[4] S. Balduin, et al., “Towards a universally applicable neural state

estimation through transfer learning,” in Proc. of 2021 IEEE PES

Innovative Smart Grid Technologies Europe, 2021.
[5] G. Cybenko, “Approximation by superpositions of a sigmoidal

function,” Mathematics of Control, Signals and Systems, vol. 2, no.

4, pp. 303–314, 1989.
[6] H. T. Siegelmann and E. D. Sontag, “On the computational power

of neural nets,” Journal of Computer and System Sciences, vol. 50,

no. 1, pp. 132–150, 1995.
[7] M. Bodén and J. Wiles, “Context-free and context-sensitive

dynamics in recurrent neural networks,” Connection Science, vol.

12, no. 3-4, pp. 197–210, 2000.
[8] K. R. Mestav, J. Luengo-Rozas, and L. Tong, “State estimation for

unobservable distribution systems via deep neural networks,” in

Proc. of 2018 IEEE Power & Energy Society General Meeting,

2018.
[9] T. Nakagawa, Y. Hayashi, and S. Iwamoto, “Neural network

application to state estimation computation,” in Proc. of the First

Int. Forum on Applications of Neural Networks to Power Systems,

1991, pp. 188–192.
[10] A. S. Zamzam, X. Fu, and N. D. Sidiropoulos, “Data-driven

learning-based optimization for distribution system state

estimation,” IEEE Trans. on Power Systems, vol. 34, no. 6, pp.

4796–4805, 2019.
[11] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power

system state estimation and forecasting via deep unrolled neural

networks,” IEEE Trans. on Signal Processing, vol. 67, no. 15, pp.

4069–4077, 2019.
[12] A. S. Zamzam, X. Fu, and N. D. Sidiropoulos, “Data-driven

learning-based optimization for distribution system state

estimation,” IEEE Trans. on Power Systems, vol. 34, no. 6, pp.

4796–4805, 2019.
[13] P. P. Barbeiro, J. Krstulovic, H. Teixeira, J. Pereira, F. J. Soares,

and J. P. Iria, “State estimation in distribution smart grids using

autoencoders,” in Proc. of 2014 IEEE 8th Int. Power Engineering

and Optimization Conf., 2014, pp. 358–363.

[14] A. S. Zamzam and N. D. Sidiropoulos, “Physics-aware neural

networks for distribution system state estimation,” IEEE Trans. on

Power Systems, vol. 35, no. 6, pp. 4347–4356, 2020.
[15] M. Abdel-Nasser, K. Mahmoud, and H. Kashef, “A novel smart

grid state estimation method based on neural networks,” Int.

Journal of Interactive Multimedia and Artificial Intelligence, vol.

5, no. 1, pp. 92–100, 2018.
[16] M. Q. Tran, A. S. Zamzam, and P. H. Nguyen, “Enhancement of

distribution system state estimation using pruned physics-aware

neural networks,” arXiv, arXiv:2102.03893, 2021.
[17] M. J. Hossain and M. Rahnamay–Naeini, “State estimation in

smart grids using temporal graph convolution networks,” in Proc.

of 2021 North American Power Symposium, 2021.
[18] V. Bolz, J. Rueß, and A. Zell, “Power flow approximation based

on graph convolutional networks,” in Proc. of 2019 18th IEEE

International Conference on Machine Learning and Applications,

2019, pp. 1679–1686.
[19] Y. Seo, M. Defferrard, P. Vandergheynst, and X. Bresson,

“Structured sequence modeling with graph convolutional recurrent

networks,” arXiv, arXiv:1612.07659, 2016.
[20] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G.

Monfardini, “The graph neural network model,” Trans. Neur.

Netw., vol. 20, no. 1, pp. 61–80, Jan. 2009.
[21] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional

neural networks on graphs with fast localized spectral filtering,”

arXiv, arXiv:1606.09375, 2016.
[22] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional

recurrent neural network: Data-driven traffic forecasting,” arXiv,

arXiv:1707.01926, 2017.
[23] B. Rozemberczki, P. Scherer, O. Kiss, R. Sarkar, and T. Ferenci,

“Chickenpox cases in hungary: A benchmark dataset for

spatiotemporal signal processing with graph neural networks,”

arXiv, arXiv:2102.08100, 2021.
[24] S. Meinecke, D. Sarajlić, S. R. Drauz et al., “SimBench—A

benchmark dataset of electric power systems to compare

innovative solutions based on power flow analysis,” Energies, vol.

13, no. 12, Jan. 2020.
[25] J. Hiry, “Agent-based discrete-event simulation environment for

electric power distribution system analysis,” Dissertation, TU

Dortmund, 2022.
[26] C. Kittl, “Entwurf und Validierung eines individualitätszentrierten,

interdisziplinären Energiesystemsimulators basierend auf

ereignisdiskreter Simulation und Agententheorie,” Dissertation,

TU Dortmund, Dortmund, 2022.
[27] B. Rozemberczki, P. Scherer, Y. He, et al., “PyTorch geometric

temporal: spatiotemporal signal processing with neural machine

learning models,” in Proc. of the 30th ACM Int. Conf. on

Information and Knowledge Management, 2021, pp. 4564–4573.
[28] A. Pareja, G. Domeniconi, J. Chen, et al., “EvolveGCN: Evolving

graph convolutional networks for dynamic graphs,” arXiv,

arXiv:1902.10191, 2020.
[29] L. Zhao, Y. Song, C. Zhang, et al., “T-GCN: A temporal graph

convolutional network for traffic prediction,” IEEE Trans. on

Intelligent Transportation Systems, vol. 21, no. 9, pp. 3848–3858,

Sep. 2020.
[30] A. Bilogur. Most common random seeds. Kaggle. Dec. 2017.

[Online]. Available:

https://www.kaggle.com/code/residentmario/kernel16e284dcb7/no

tebook

Copyright © 2023 by the authors. This is an open access article

distributed under the Creative Commons Attribution License (CC BY-

NC-ND 4.0), which permits use, distribution and reproduction in any

medium, provided that the article is properly cited, the use is non-

commercial and no modifications or adaptations are made.

Alexander Berezin was born in Moscow on

September 27, 1996, studied applied

mathematics at the Moscow Institute of

Electronic Technology and made his Bachelor’s

and Master’s degree in 2018 and 2020,

respectively. Since 2021, he is employed at

OFFIS - Institute for Information Technology in

Oldenburg and working primarily on project

TRANSENSE. His primary research interest at

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

International Journal of Electrical and Electronic Engineering & Telecommunications Vol. 12, No. 3, May 2023

215

the moment is the application of graph convolutional neural networks to

the power system state estimation problem.

Stephan Balduin was born in Aachen,

Germany on 5th September 1987 has studied

computer science at the University of

Oldenburg and made his Bachelor’s and

Master’s degree in 2014 and 2017,

respectively. Since 2017, he is employed at

OFFIS - Institute for Information Technology

in Oldenburg and has worked on different

projects in the context of artificial intelligence

for the electrical energy system. He focuses

his research on AI-based analysis of energy

systems using surrogate models.

Thomas Oberließen was born in Paderborn,

Germany on 19th August 1994 has studied

industrial engineering at the Technical

University of Dortmund and made his

Bachelor’s and Master’s degrees in 2018 and

2020, respectively. Since 2020, he is

employed at the Technical University of

Dortmund as a research associate, where he

focuses on agent-based distribution grid

simulation and other research topics around

distribution grid planning and operation.

Sebastian Peter was born in Witten,

Germany on 7th June 1992, has studied

Computer Science at the Technical University

of Dortmund and completed his Master’s

degree in 2021. Since 2021 he focuses on

agent-based discrete-event distribution grid

simulations as part of his employment as a

research associate at the Technical University

of Dortmund, while also working on various

other topics related to distribution grid

planning and operation.

Eric MSP Veith was received his Ph.D.

degree in computer science from the Freiberg

University of Mining and Technology,

Germany, in 2017. He currently leads the

junior research group Adversarial Resilience

Learning at the University of Oldenburg,

Germany, and is a member of OFFIS.

Previously, he was an R&D group manager

and researcher at OFFIS, Oldenburg,

Germany. His research interests are focused

on competing agents in the ARL methodology,

applying Evolutionary Deep Reinforcement Learning to critical national

infrastructures for their resilient operation. He is a member of the ACM,

IEEE, German VDE, and DIN. He serves as a TPC member at

numerous conferences such as ACM e-Energy.

