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Abstract—Neural State Estimation (NSE) is a novel 

application of deep learning which is concerned with 

interpolating the state of a distribution power grid from a 

limited amount of sensor data and can be represented as a 

non-linear graph time-series nowcasting problem. Although 

several authors have proposed their solutions for NSE, there 

is neither a comparison of approaches nor an industry-

standard state of the art model yet. The main purpose of 

this paper is to compare these solutions to a promising new 

approach: recurrent graph convolutional neural networks. 

There are theoretical reasons to assume that this class of 

models is suited for solving NSE. Our experiments verify 

that they achieve similar performance while also presenting 

many unique advantages compared to the previously 

proposed models.  

Index Terms—Graph convolutional networks, neural state 

estimation, power system state estimation 

I. INTRODUCTION 

State Estimation (SE) is the task of relating grid usage 

observations to the current grid state. For many years, SE 

was mainly performed for the transmission grids based on 

real and pseudo-measurement data. While the 

transmission grid is very extensively equipped with 

sensor technology, this is not the case for the distribution 

grids. Those sensors were not necessary to operate a 

distribution grid for a long time, but this has changed due 

to the increasing number of complex consumers. A grid 

operation closer to the grid’s design limit caused by the 

increasing complexity of the distribution grid results in 

the need for efficient grid expansion and operational 

detection of power peaks. SE could provide the necessary 

grid transparency for the distribution grids, but some 

issues make it hard or impossible to do so. The required 

measurement data is missing since the distribution grids 

are much less permeated with sensor technology. 

Operators have to approximate load and generation with 

default load profiles, which do not describe the actual 

behavior of a given system’s participants. More sensor 

technology would be needed, which is economically not 

feasible since distribution grids have many more nodes 
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and lines to cover [1]. Furthermore, they are much more 

sensitive to changes in impedance than transmission grids. 

This characteristic invalidates some simplifications 

usually made for transmission grids [2], like assuming a 

near-DC power flow. Due to the X/R ratio in distribution 

grids, this assumption does not hold for them. To achieve 

grid transparency despite these issues, an intelligent 

approach is required [3, 4]. 
Artificial neural networks (ANNs) gained popularity in 

many different fields because of their ability to function 

as universal approximators for every Borel-measurable 

function, or even arbitrary dynamic systems in the case of 

Recurrent neural network (RNNs) [5–7]. Furthermore, 

ANNs have proven to be faster than iterative solutions for 

the PF calculation in the distribution grid and, depending 

on the quality of the data available for training, can 

achieve even higher solution quality [8]. Neural State 

Estimation (NSE), i.e. using ANNs to approximate the 

state of a given grid, was successfully applied in the past 

[9] and is the subject of active research indicated by an 

increasing number of publications [10, 11]. Generally, the 

approaches of these publications can be categorized into 

two types. The first approach is grid-agnostic neural 

networks, e. g., feed-forward ANNs [12] or autoencoders 

[13]. As the name implies, those approaches do not 

require any information about the grids’ topology or 

parameters. However, that information can be exploited 

to reduce the complexity of the training procedure, which 

leads to the second category: the grid-aware neural 

networks [14], also referred to as physics-aware, physics-

informed, or physics-based models. 
To the best of our knowledge, there has not been a 

direct comparison of NSE approaches yet. Therefore, the 

contribution of our work is to fill this gap and introduce a 

new type of model for the given problem. The rest of this 

paper is structured as follows. In Section II we review 

state-of-the-art NSE approaches from the literature. In 

Section III we describe the considerations that lead to the 

new type of models we propose for NSE. In Section IV 

we describe the experiment setup used in order to 

compare selected NSE approaches, and we present the 

results from those experiments in Section V. We discuss 

the results and outline possible directions for future 

research in the conclusion. 
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II. RELATED WORK 

NSE is a relatively new research field, with the first 

notable works published in 2014. Reference [13] used 

autoencoders to estimate the state of distribution grids. 

They used a Particle Swarm Optimization to reconstruct 

values for missing signals, which are, in this context, 

voltage magnitudes and phases. Later publications used 

simple feed-forward ANNs to directly map the available 

inputs (mostly complex power values of load and 

generation) to the desired outputs [8, 15]. Another of 

those early approaches used ANNs to estimate inputs for 

the traditional SE methods like Gauss-Newton [12]. 
More recent publications seem to prefer grid-aware 

over grid-agnostic approaches. Those have some 

advantages, e. g., they require less tuning effort and may 

yield better performance. One, if not the first, of these 

grid-aware models, is the physics-aware neural network 

(PAWNN), proposed by [14]. The idea is to use the 

classic feed-forward neuron as a building block but prune 

its synapses according to the graph’s adjacency matrix, 

i.e., the grids’ topology. These neurons are stacked in a 

variable number of layers, which is equal to the 

maximum diameter of a vertex-cut partition of the 

original graph (D). The algorithm for calculating is 

explained in their paper. 
An improved derivation of this model was proposed in 

[16]. Designing the ANN architecture based on the 

adjacency matrix, as it was done for the original PAWNN, 

may lead to unnecessary connections between layers. The 

pruned physics-aware neural network (P2N2) cut out 

those unnecessary connections and used separate weight 

matrices for the individual parts of the ANN, depending 

on the grid topology. 
Another approach is the prox-linear neural network 

model, proposed in [11], which is based on a prox-linear 

solver for SE using the least absolute value (LAV) 

method. The main idea is to split the nonlinear problem 

of SE into several blocks that are proximal linear. The 

prox-linear neural network is built by unfolding these 

blocks and can achieve significant performance 

improvements. Additionally, the authors developed a 

deep RNN for power system state forecasting (PSSF) 

since such networks are capable of learning temporal 

correlations in (historical) data. 
Finally, while this paper was being finalized, we 

discovered another study that tested a similar hypothesis 

[17] of applying recurrent graph convolutional neural 

networks (RGCNNs) to NSE. However, we believe that 

our research is still valuable, as it was conducted 

independently and tests many more models. 

III. RECURRENT GRAPH CONVOLUTIONAL NEURAL 

NETWORKS 

Now let us abstract away from the existing solutions 

and think about the characteristics required from an ANN 

model to tackle the NSE problem efficiently. For that, we 

need to start with the properties of datasets commonly 

used for SE. These datasets are, fundamentally, graphs 

with time series associated with every node. From that, 

we can assume that a desirable model has to be geometric 

in the sense that it can leverage the structure of the graph 

and also recurrent to capture temporal correlations in the 

time series. We also expect it to benefit from being 

convolutional because the graph convolution operation is 

a good first-order approximation of the current flow in 

the power grid [18]. From these considerations, we can 

reasonably expect the models residing at the intersection 

of these classes (depicted in Fig. 1) to be most suited for 

NSE. 

 

Fig. 1. Model selection rationale. 

This class of models is called RGCNNs, originally 

proposed in [19], and it is represented by a significant 

number of different models in the literature. However, we 

have not been able to find a comprehensive review. 
RGCNNs belong to a more general class of graph 

convolutional networks (GCNs), first proposed in [20], 

which can operate naturally on graph-structured data. By 

extracting and utilizing features from the underlying 

graph, GCNs can make more informed predictions about 

entities in these interactions, as compared to models that 

consider individual entities in isolation. This is achieved 

by employing a special convolution [21] on every node of 

the graph. 

Since the convolution operation is local (only affects 

the adjacent nodes), the number of trainable parameters in 

GCNs is comparatively small. It also means that the 

model does not store information about the graph’s 

structure but only about correlations between adjacent 

nodes. This makes GCNs ideal for transfer learning 

applications since a trained model can be transferred to a 

new graph and retain its predictive ability, provided that 

the interactions between nodes follow the same patterns. 

This ability is important for practical implementations of 

NSE, as discussed in [4]. 

RGCNNs combine the convolutional units from GCNs 

with memory units from RNNs in different ways in order 

to capture temporal correlations in the data. These models 

have been successfully applied to several practical 

problems, such as predicting traffic [22] and infection 

spread [23]. 

IV. EXPERIMENT SETUP 

The question we want to answer with this experiment is 

whether generic RGCNNs can compete in solving the 

NSE problem with models developed explicitly for this 

task. 
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A. Data Set for Neural State Estimation 

To generate reproducible results, we chose open data 
sources and simulated data as the basis of our model 
comparison. Using synthetic data circumvents the issue 
of incomplete data sets due to a lack of sensor technology 
and data privacy restrictions. The grid and training data 
we used are based upon a SimBench benchmark model 
(available under ODbL and DbCL licenses). SimBench 
provides grid models that resemble real-life grids, as well 
as typical nodal load and generation time series [24]. 

The specific grid chosen is the 1-MV-urban–1-sw, a 
147-node, 10 kV medium voltage grid. Using the 
provided load and generation time series, we calculated 
the resulting grid state with the agent based power system 
simulation SIMONA [25, 26]. The resulting data relevant 
to the model comparison comprises complex nodal 
voltages for all nodes with a temporal resolution of 15 
minutes. In total, there are 35135 timesteps. 

For this experiment, the dataset is split 50:50 into 
training and validation data along the time axis, meaning 
that the models are trained on the first half of the time 
steps and have to forecast the second half, so no data 
points are repeated in the process. 

By design, RGCNNs have a problem with SE: they 
require input data (labels) for all nodes of the graph, 
while the very nature of the task implies that input data is 
only available for the observable nodes. A possible 
solution for this issue is found in [20]. The unobservable 
nodes can be initialized with Gaussian white noise 
sampled from ground truth distribution. The output data 
(targets) is the ground truth itself. Specifically, we 
assume 30% grid observability, i.e., 30% of nodes in the 
input data are initialized with the ground truth, and the 
rest are randomized. 

B. Metric 

In order to perform a statistical comparison of models, 
a numerical metric for said comparison has to be agreed 
upon first. Of course, such a metric would necessarily 
have to reduce the complexity of the task and thus would 
miss important details of the result. We will attempt to 
partially compensate for this in the next section by 
plotting each model’s per-node error. 

We have chosen to use the metric that is most 
commonly used in deep learning for evaluating the 
performance in regression problems, which is Mean 
Squared Error (MSE). It is also used as the loss function 
for all models except the prox-linear Network. 

C. Baseline Model 

The best baseline for comparing SE models would be 
the conventional method of solving this problem, namely 
the weighted least squares algorithm. However, that 
algorithm has a high number of manually tuned 
parameters, and we could not obtain a representative 
open-source implementation. Instead, we use a simple 
RNN, passing graph nodes as features in order to capture 
temporal correlations, which neither the physics-aware 
neural network nor the prox-linear neural network does. 

D. Physics-Aware Neural Network 

We did not find a reference implementation for this 
model, proposed in [14], and implemented it ourselves 

using PyTorch. The implementation may not be entirely 
correct and thus may not accurately represent its’ 
performance. Unfortunately, we were not able to replicate 
the P2N2 variant from [16] since the proposed algorithm 
is only explained in the paper on one trivial example, and 
it is not clear how to generalize that example to more 
complex data. 

E. Prox-Linear Neural Network 

A reference implementation is available on GitHub: 
https://github.com/LiangZhangUMN/PSSE-via-DNNs. 
We adapted the implementation to use PyTorch instead of 
TensorFlow but did not change anything else. 

F. Recurrent Graph Convolutional Neural Networks 

Fortunately, there exists a whole library dedicated to 
reference implementations of the most well-known 
RGCNN models called PyTorch Geometric Temporal 
(PyGT) [27]. 

We decided to only use models without 
hyperparameters from PyGT. There are two reasons for 
that. First, hyperparameter tuning significantly 
complicates a comparative study. Second, PyGT in its 
current implementation suffers from performance issues 
that we will discuss in more detail in Evaluation, making 
the tuning process far too slow. This left us with two 
models: EvolveGCN and Temporal GCN. 

In both cases, we build the final model by stacking D 
RGCNN layers (like [14] did for their PAWNN model) to 
ensure that information from the observable nodes is 
propagated across the entire graph during the forward 
pass. The loss function used for training is MSE. 
1) EvolveGCN 

The Evolving Graph Convolutional Network 
(EvolveGCN) is a model proposed in [28]. It consists of a 
GCN, which is built for the graph structure, and a RNN, 
which tracks changes in the graph topology and regulates 
the GCN parameters in each step to reflect those changes. 
It has two slightly different variants, EvolveGCN-H and 
EvolveGCN-O, which differ in how the weight matrix is 
updated. The “-H” treats the weight matrix as a hidden 
state of the dynamical system, while the “-O” treats it as 
the system’s output. The authors recommend the “-O” 
variant if the graph structure is more informative than 
node labels. We included both of them in the comparison. 
2) Temporal GCN 

The temporal graph convolutional network (TGCN) is 
a model originally proposed in [29] for traffic prediction. 
A GCN is used to capture spatial features and is 
combined with gated recurrent unit (GRUs) for temporal 
features. The authors provide a reference implementation, 
but there is also an implementation in the aforementioned 
PyGT library, which is the one that we chose. 

V. EVALUATION 

The following experiments were run on an on-premise 
NVIDIA DGX Server, although a single consumer-class 
GPU with CUDA support is sufficient to replicate them. 

A. Individual Model Evaluation 

Below are the results of training the models in related 

work and experiment setup on the data from data set for 
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neural state estimation. MSE is used as the overall 

performance metric, while the per-node figures depict 

absolute error for better visual representation. We are 

omitting the figure for the RNN since we do not expect it 

to perform competitively. 
Note that all models are trained in stochastic gradient 

descent (SGD) mode. This is because PyGT does not 

support batches for most of its models and is only able to 

process one data point at a time. Currently, this presents a 

disadvantage for RGCNNs. Still, since it is a technical 

rather than a theoretical limitation, we are using SGD on 

all models to make the comparison more representative, 

on the assumption that the training mode only affects the 

convergence speed and not the prediction quality once 

convergence has been reached. 
First, looking at the convergence graphs, we can see 

Fig. 2 and Fig. 3 that EvolveGCN-H converges almost 

immediately and proceeds from the training data set to 

the testing one almost without loosing accuracy; 

EvolgeGCN-O shows similar behavior but is not as stable 

as the former. TGCN in Fig. 4 behaves similar as well but 

with more noise on the test set compared to the 

EvolveGCNs. PAWNN in Fig. 5 converges slower and to 

a lower point but generalizes to the test sequence less 

successfully. The convergence of the prox-linear network 

as shown in Fig. 6 is too noisy to analyze. These results 

are consistent with the number of trainable parameters for 

each model, which we will provide later in this section. 

 
Fig. 2. EvolveGCN-H 

 
Fig. 3. EvolveGCN-O. 

 
Fig. 4. TGCN. 

F

ig. 5. PAWNN. 

 
Fig. 6. Prox-linear network. 

Second, the per-node error shows an important 

distinction between RGCNNs and other models: the 

former perform better on long branches of the graph, 

while the latter produce more consistent error values over 

all nodes. This becomes clear with a look on the scale of 

the color-coding. The EvolveGCN-H scales from 0.2 to 

0.8 with low error values especially in long branches and 

a few high values in the center, while EvolveGCN-O  has 

error values between 0.1 and 0.7 with similar 

characteristic to the former, as shown in Fig. 2 and Fig. 3 

respectively. Fig. 4 shows that TGCN has a lower delta 

than the former two models but, again, a similar 
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characteristic. The PAWNN in Fig. 5 has lower error 

values with a smaller delta between 0.04 and 0.18 but the 

error in the long branches is higher than in the center. 

Finally, the prox-linear network as shown in Fig. 6 still 

has a small delta compared to the RGCNNs with 0.05 to 

0.3 with a similar characteristic to the PAWNN. 

B. Model Comparison 

We have used 10 most common random seeds [30] to 

collect performance statistics, which is presented in Fig. 7. 

All the data collected is also available in a supplementary 

file results.xlsx in our repository (see Availability of data 

and code). 
Looking at Fig. 7 in isolation, it is hard to determine 

the best performing model: PAWNN and RGCNNs 

produce very similar average results. The Prox-linear 

network is remarkably invariant of the random seed, but 

its performance is worse than the competition. Finally, 

RNN is far behind all other models. This suggests that 

temporal correlations in isolation are significantly less 

important for the SE problem than spatial ones. 
In terms of variation, we observe that RGCNN are 

relatively more consistent at their performance level, with 

TGCN being the most consistent of the RGCNNs. Since 

the main differentiating feature between TGCN and 

EvolveGCN is the ability of the former to better leverage 

temporal correlations, this suggests that incorporating 

them into the model is still valuable. These observations 

point us to a more rigorous statistical analysis of the 

dataset as a venue for further research into the problem. 

 
Fig. 7. Comparing the accuracy 

 
Fig. 8. Comparing the parameter count. 

A much more drastic difference between conventional 

models and RGCNNs can be observed in Fig. 8, which 

depicts the number of trainable parameters of each model. 

Here we can see that this number is roughly three orders 

of magnitude lower for the RGCNNs. Note that the 

parameter axis is logarithmic and that some models have 

a variable number of parameters. 
It would be reasonable to assume that this difference in 

complexity translates into a significantly faster training 
process for the RGCNNs, but that is not the case in 
practice. Unfortunately, it is currently impossible to 
perform a representative comparison of training time 
between conventional and RGCNN models due to 
computational inefficiencies in the PyGT library [27]. 
However, we can assume that the training time for ideal 
implementations would be roughly proportional to the 
number of parameters in each model. By that logic, 
RGCNNs should have the advantage in this metric. 

VI. CONCLUSION 

With the experimental data from Evaluation we can 

claim that the question posed Experiment Setup in is 

answered in the affirmative. In other words, generic 

RGCNN models applied to the NSE problem offer results 

competitive with those from models developed 

specifically for this task and at a much lower cost in 

model complexity. While specialized models rely on a 

large number of parameters to fit all the data at once and 

have problems generalizing, RGCNNs focus on 

approximating the local interactions between nodes in a 

graph. As a result, they can better generalize to new data 

and possibly even to new grid topologies. 
The next step in research on this topic would be 

developing more specialized RGCNNs focused on NSE 

that can also leverage the inherent transferability of 

GCNs. There is also much room for improving the 

computational performance of these models. 

AVAILABILITY OF DATA AND CODE 

We welcome the reviewers and other authors to 

replicate our experiments. For this purpose, we provide 

the complete source code along with the dataset in the 

following GitLab repository: 

https://gitlab.com/funbotan/transense-model-comparison. 
The repository README will provide detailed 

instructions for setting up the environment. 
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ACRONYMS 

ANN: Artificial Neural Network. 
EvolveGCN: Evolving Graph Convolutional Network. 
GCN: Graph Convolutional Network. 
GRU: Gated Recurrent Unit. 
LAV: Least Absolute Value. 
MSE: Mean squared error. 
NSE: Neural State Estimation. 
P2N2: Pruned Physics-Aware Neural Network. 
PAWNN: Physics-Aware Neural Network. 
PF: Power Flow. 
PSSF: Power System State Forecasting. 
PyGT: PyTorch Geometric Temporal. 
RGCNN: Recurrent Graph Convolutional Neural 

Network. 
RNN: Recurrent Neural Network. 
SE: State Estimation. 
SGD: Stochastic gradient descent. 
TGCN: Temporal Graph Convolutional Network. 
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